The uptake of 2-methyl-3-buten-2-ol into aqueous mixed solutions of sulfuric acid and hydrogen peroxide.

نویسندگان

  • Ze Liu
  • Maofa Ge
  • Weigang Wang
  • Shi Yin
  • Shengrui Tong
چکیده

Multiphase acid-catalyzed oxidation with hydrogen peroxide (H(2)O(2)) has been suggested recently to be a potential route to SOA formation from isoprene and its gas-phase oxidation products, the kinetics and chemical mechanism of this process have not been well-known yet. In this work, the uptake of 2-methyl-3-buten-2-ol (MBO), an important biogenic hydrocarbon and structurally similar to isoprene, into aqueous mixed solutions of H(2)O(2) and sulfuric acid (H(2)SO(4)) was performed using a rotated wetted-wall reactor coupled to a differentially pumped single-photon ionization time of flight mass spectrometer (RWW-SPI-TOFMS). The reactive uptake coefficients (γ) were acquired for the first time and the reaction pathways were deduced according to products information. The reactive uptake coefficients of MBO into H(2)SO(4)-H(2)O(2) mixed solutions are much greater than that into H(2)SO(4) solutions. Acetaldehyde, acetone and an on-line product, which transformed to isoprene readily in the duration of an off-line experiment, were suggested as products in this process. The further reactions of the carbonyl products can occur in acidic solution, which may play a role in SOA formation. Additionally, in real atmosphere the on-line product is apt to transform to isoprene, an acknowledged precursor of biogenic SOA. Thus, the multiphase acid-catalyzed oxidation of MBO with H(2)O(2) might be a potential contributor to SOA loading.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acid-catalyzed heterogeneous reaction of 3-methyl-2-buten-1-ol with hydrogen peroxide.

Acid-catalyzed heterogeneous oxidation with hydrogen peroxide (H2O2) has been suggested to be a potential pathway for secondary organic aerosol (SOA) formation from isoprene and its oxidation products. However, knowledge of the chemical mechanism and kinetics for this process is still incomplete. 3-Methyl-2-buten-1-ol (MBO321), an aliphatic alcohol structurally similar to isoprene, is emitted b...

متن کامل

The uptake of methyl vinyl ketone, methacrolein, and 2-methyl-3-butene-2-ol onto sulfuric acid solutions.

To investigate the link between molecular structure, reactivity, and partitioning of oxygenated organic compounds in acidic aerosols, the uptake of three compounds found in the atmosphere, methyl vinyl ketone (MVK), methacrolein (MACR), and 2-methyl-3-butene-2-ol (MBO), by sulfuric acid solutions has been measured using a rotated wetted-wall reactor (RWW) coupled to a chemical ionization mass s...

متن کامل

Cellulose Sulfuric Acid: As an Efficient Bio Polymer Based Catalyst for the Selective Oxidation of Sulfides and Thiols by Hydrogen Peroxide

Cellulose sulfuric acid as a bio-polymer based solid catalyst efficiently catalyzes the selectively oxidation of sulfides to sulfoxides and thiols to disulfides using hydrogen peroxide as a green oxidant with good yields at room temperature. The developed method offers a number of advantages such as high selectivity, mild reaction conditions, simple operation, cleaner reaction profiles, low...

متن کامل

Uptake and surface reaction of methanol by sulfuric acid solutions investigated by vibrational sum frequency generation and Raman spectroscopies.

The uptake of methanol at the air-liquid interface of 0-96.5 wt % sulfuric acid (H2SO4) solutions has been observed directly using vibrational sum frequency generation (VSFG) spectroscopy. As the concentration of H2SO4 increases, the VSFG spectra reveal a surface reaction between methanol and H2SO4 to form methyl hydrogen sulfate. The surface is saturated with the methyl species after 15 min. T...

متن کامل

Biogenic 2-methyl-3-buten-2-ol increases regional ozone and HOx sources

[1] We present the first regional-scale chemistry simulation investigating the effects of biogenic 2-methyl-3-buten-2-ol (MBO) emissions on air quality. In a central California model domain, MBO emissions have a distinctly different regional pattern than isoprene but have similar daily maxima of about 5 mg m 2 hr . MBO oxidation causes an increase in ozone, formaldehyde, acetone and consequentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2011